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Abstract. We use the technique of invasion percolation to compute the critical points and 
critical exponents of percolation on a random lattice which is the dual of a Voronoi network. 

1. Introduction 

The percolation problem was introduced by Broadbent and Hammersley [ 11 as a model 
for fluid flow in porous media. Since then many more applications of percolation 
theory have been found, in problems as diverse as the spread of disease in an orchard 
and the liquid-glass transition. 

One of the most interesting discoveries which has been made about percolation 
theory is its relationship to the theory of critical phenomena. Both theories are 
concerned with the way in which physical quantities of the system under study vary 
as a critical point is approached. In percolation theory these physical quantities are 
directly related to the moments of the cluster distribution function which diverge as 
they approach the critical point with a power law behaviour governed by critical 
exponents characteristic of the universality class to which the system belongs. The 
same behaviour is displayed by the correlation functions in the theory of critical 
phenomena. Percolation theory is simpler than the theory of critical phenomena 
because no interactions are involved and it is a good means of obtaining intuition and, 
potentially, rigorous results which can be applied to the more complicated theory. 

In this paper we study percolation on a random lattice and compute critical points 
and critical exponents. We are interested in comparing percolation on regular and 
random lattices. We hope that by demonstrating the universality of percolation on 
regular and random lattices we can give a basis for similar investigations on spin 
systems. Already numerical investigations have been performed for the Ising model 
[2] and the XY model [3] on two-dimensional random lattices, but because of the 
complex nature of these models it was not possible to obtain accurate values for the 
critical exponents or to demonstrate their universality with regular lattice models. Such 
studies are of particular interest for showing that the continuum limit of field theories 
on regular and random lattices is the same [2], a problem which is central to establishing 
the relevance of random lattice field theory [4-61. 

Quite apart from these considerations it is of general interest to study percolation 
on a random lattice because many of the systems which exhibit percolation thresholds 
in nature are disordered systems (e.g. fluid flow in porous media, variable-range hopping 
in amorphous semiconductors) whilst by far the greater volume of work on percolation 
up to date has been restricted to studies on regular systems. 
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2. The random lattice 

The random lattice which we will be discussing in this paper is of the type described 
by us in [3]. The sites of the lattice are points distributed at random in the plane. 
They are linked up to form triangles according to the criterion that the circumcircle 
of any triangle in the lattice contains no other site. It is known that this can be done 
in such a way that the triangles fill the plane with no overlap [4]. The dual of the 
random lattice is a lattice consisting of Voronoi polygons [7,8]. The geometrical 
properties of these random lattices have been thoroughly researched [4-81. 

Percolation in Voronoi networks has been discussed in papers by Winterfeld er a1 
[9] and Jerauld e? a1 [lo] but they did not compute any critical exponents. We feel 
that we can extend their work by using a different method of computation, ‘invasion 
percolation’, which seems particularly suited to studies on random lattices. 

3. Methods of simulating percolation 

Usually in computer simulations of site percolation the sites of the lattice are assigned 
a random number between 0 and 1 .  A site is defined as being ‘occupied’ at the chosen 
percolation concentration p if it has been assigned a value less than p .  Clusters of 
occupied sites are labelled and counted and cluster distributions are computed by 
averaging over several different assignments of random numbers to the lattice. The 
percolation concentration p is varied until the best estimate for the critical point is 
found. 

An alternative method of investigation was introduced by Leath [ 1 1 1 .  It involves 
growing a single cluster at a percolation concentration p and then averaging over 
several of these clusters to compute the probability distribution P(n) of generating a 
cluster of size n. As the critical concentration is approached, the large-n tail of P ( n )  
grows so that the positive moments of the distribution diverge. 

The algorithm for producing a cluster at concentration p is as follows. 
( 1 )  Choose a site to be a seed of the cluster. 
(2) Assign random numbers between 0 and 1 to the nearest-neighbour sites of the 

(3 )  Find the site on the boundary which has the smallest number, r, assigned to it. 
(4) If r < p ,  then accept that site into the cluster and assign random numbers to 

any of its nearest neighbours which are empty, thereby adding them on to the boundary 
of the cluster. Repeat step (3 ) .  

seed. These sites form the boundary of the cluster to start with. 

( 5 )  If r > p ,  then terminate the cluster. 
Wilkinson and Barsony [ 121 considered a procedure very similar to the one above 

but in their version there was no percolation concentration p to be considered-at 
each stage the site on the boundary with the smallest random number was accepted 
into the cluster regardless. Hence the clusters were never constrained to terminate and 
could be grown to any desired size. 

This process is called ‘invasion percolation’. It was first introduced by Lenormand 
[13] and Chandler er a1 [14] in the context of a simulation of oil displacing water in 
a porous medium. Further studies [ 12, 15-17] have shown an interesting relationship 
between invasion percolation and ordinary percolation at threshold which allows 
invasion percolation to be used to study the critical behaviour of the ordinary percola- 
tion model. 
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4. Properties of invasion percolation 

In invasion percolation a quantity called the 'acceptance profile' is computed. The 
acceptance profile b,, ( r )  at value r and time n is defined by 

(number of random numbers in [ r, r + dr] accepted into cluster),, 
(number of random numbers in [ r, r + dr] considered),, bn(r) = 

where ( 

lattice in two dimensions that 

),, denotes an ensemble average over clusters of size n [12]. 
In Chayes et a1 [16] it is proved rigorously for invasion percolation on a square 

i f r < p ,  
if r > p c  

lim b,, ( r )  = 
n-m 

where pc is the critical concentration of the corresponding ordinary percolation model. 
Hence, for large n, the acceptance profile approaches a step function whose cut-off 
value coincides with pc. We expect this result to apply equally well to invasion 
percolation on a two-dimensional random lattice. 

For finite n the acceptance profile has a transition region around pc, i.e. it is 
'rounded off' in the manner illustrated in figure 1. It has been conjectured [12] that 
the rate of convergence of the acceptance profile to a step function follows a scaling 
behaviour governed by a critical exponent. More precisely, the quantities B,(  n) and 
B,(n) defined by 

Rondom number'? 

Figure 1. This figure illustrates the 'rounding off' of the acceptance profile due to finite-size 
effects in a typical invasion percolation calculation. 
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which represent the deviation of the acceptance profile from a step function are assumed 
to have a power law behaviour: 

Bl ( n )  - b, n-"* B2( n )  - b,n-'/' 

with a common exponent A. 
Furthermore, it is conjectured that A should be identified with the gap exponent 

p + y of ordinary percolation. These conjectures are well supported by the results of 
computer simulations and by the exact solution of the invasion model on the Cayley 
tree [17]. 

Another unproven conjecture about the clusters grown in invasion percolation is 
that they have a fractal dimension, 0, which is the same as that for the infinite cluster 
in ordinary percolation at threshhold. Within the accuracy that either value has been 
determined they do appear to agree. 

The only rigorous results which have been shown for the invasion cluster in two 
dimensions are that, in the large-n limit, 

(i)  the surface to volume ratio has the value ( 1  - p c ) / p c ,  and 
(ii) the invaded region has zero volume fraction [16]. 
These results are consistent with the conjecture that invasion percolation reproduces 

as n+co 

ordinary percolation at threshhold. 

5. Discussion of results 

In our work we followed the procedures of Wilkinson and Barsony [12] to measure 
the critical concentration p c  and the critical exponents l /A and 1/D for site and bond 
percolation on a random lattice. The invasion percolation technique works just as well 
for random as for regular lattices, whereas some of the other methods for measuring 
percolation quantities involve stepping through the lattice from site to site in a way 
which is special to regular lattices. 

Our basic lattice was a periodic one of 10 000 sites. We started at a site near the 
centre of the lattice and grew clusters out into repetitions of the basic lattice. We grew 
clusters containing 3000 sites. The lower end of the range of n which we used in 
calculating critical exponents was given by nmin = 300 (see [12]). All computations 
were done on the ICL DAP at Queen Mary College, London. 

Our results are presented in table 1 .  As in [ 121, the errors quoted are one standard 
deviation statistical errors estimated by dividing the data into ten groups and observing 
the standard deviation between the ten sets of results. 

The generally accepted values for the critical exponents l /A and 1/D are l /A = 8 = 
0.3956, 1/D = % = 0.5275 [ 18-20]. It is seen that the values which we found for the 
critical exponents are the same as the expected ones within the quoted errors. Actually, 

Table 1. Results of Monte Carlo simulations of invasion percolation for site and bond 
percolation on a random lattice. 

Number of 
Type clusters grown pc  l l A  1 /  D 

Site percolation lo00 0.502i0.005 0.383 i0 .042  0.534*0.013 
Bond percolation 1000 0.329i0.002 0.411 *0.035 0.530*0.014 
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the computed values are encouragingly close to the expected ones considering the 
modest size of the clusters which we grew. 

The value which we found for the critical concentration p c  for site percolation on 
the random lattice is 

0.502 * 0.005 

which is consistent with the expectation [21] that a planar triangulated lattice will 
have a critical site percolation concentration of one half (although some exceptions 
have been constructed (see [22,23]). 

The value of p c  which we found for bond percolation is 

0.329 0.002 

in agreement with Jerauld er al [ 101. This value is slightly lower than the corresponding 
value on a regular triangular lattice, presumably because the bond-averaged coordina- 
tion number is slightly higher on the random lattice than on the regular one. 

In conclusion, we have provided numerical evidence for the universality of percola- 
tion on regular and random lattices. This encourages us in our studies of statistical 
models and field theories on random lattices. 
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